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Complicated Patterns in Materials
Complicated irregular patterns can be observed throughout the
applied sciences, for example in materials science.
Can mathematical tools provide a reasonable quantitative
measurement?
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Complicated Patterns in Fluids
Certain fluids experiments and simulations exhibit spiral defect
chaos. How can one assess the correctness of the simulations?

are more difficult to characterize theoretically and experi-
mentally.

II. EXPERIMENTAL PROCEDURE

We measure convective flow in a horizontal layer of
compressed �3.2 MPa absolute pressure� CO2 gas of depth
d=0.0690±0.0005 cm. The layer is bounded above by a
5 cm thick sapphire window and below by 1 cm thick gold-
plated aluminum mirror. The lateral walls are circular,
formed out of an annular stack of filter paper sheets 3.80 cm
in diameter. An electrical resistive heater is used to heat the
bottom mirror to a temperature of Th, and the top window is
cooled to a fixed temperature of Tc=21.20±0.02 °C by cir-
culating chilled water. When the temperature difference, i.e.,
�T=Th−Tc, across the gas exceeds a critical temperature dif-
ference �Tc=4.0±0.1 °C, the onset of fluid motion occurs.
The Prandtl number Pr is 0.97. In the experiments, the sys-
tem control parameter, the reduced Rayleigh number �
= ��T−�Tc� /�Tc, is increased above onset through a range
where spiral defect chaos occurs. The characteristic time
scale, the vertical diffusion time tv, is approximately 2 s.

The flows are visualized using the shadowgraph
technique.10 Time series of shadowgraph images �Figs. 1�a�
and 1�b�� with a spatial resolution of 515�650 pixels are
captured under computer control at a rate of 11 Hz using a
12-bit digital camera interfaced to a frame grabber. The im-
ages are prepared for analysis by subtracting a background
image of the fluid below onset and using digital Fourier fil-
tering to remove high wave number components due to cam-

era spatial noise. The median value of intensity for all pixels
in the image is then determined and used as a typical thresh-
old to characterize each pixel as describing either hot upflow
or cold downflow in the convection pattern. The resulting
time series of thresholded 1-bit images are used for comput-
ing homology.

III. NUMERICAL SIMULATIONS

Our direct numerical simulations of the Boussinesq
equations employ a pseudospectral code developed by Pesch
and co-workers.11,12 The code uses Fourier modes in the
horizontal direction and appropriate combinations of trigono-
metric and Chandrasekhar functions that satisfy the top and
bottom boundary conditions in the vertical direction.8 All
runs are performed with six vertical modes and 128�128
horizontal Fourier modes in a square domain with side length
equal to 16 times the pattern wavelength at convective onset.
The time step is typically �v /500. For our analysis, the flows
are represented by 128�128 images �Figs. 1�c� and 1�d�� of
the temperature field or the vertical velocity component. The
images are typically stored every 2�v. The median value of
the flow field quantity �temperature or vertical velocity� for
each image is determined and used as a threshold to charac-
terize each gridpoint as describing hot upflow or cold down-
flow. Thus, as in the laboratory experiment, the resulting
time series of thresholded 1-bit images are used for comput-
ing homology.

In the simulations, we describe non-Boussinesq effects
arising from the temperature dependence of material proper-
ties by a Taylor expansion truncated at leading order beyond
the Boussinesq approximation. The simulations are per-
formed at constant mean temperature �Th+Tc� /2; the expan-
sion is carried out about the mean temperature. In this case,
the parameter Q �see Ref. 8� is given by

Q = �
i=0

4

�i
cPi, �1�

where the quantities Pi are linear functions of Pr−1, and the
non-Boussinesq coefficients �i

c give the difference of the re-
spective fluid properties across the layer at threshold ��=0�.
For simulations away from onset ���0�, the � dependence
of non-Boussinesq effects is characterized by coefficients
�i=�i

c�1+��. �See Ref. 13 for more details.� In non-
Boussinesq simulations, all the �i

c are retained, while in the
Boussinesq simulations, �i

c are set to 0. In all simulations, we
fix �=1.4 and set Pr=0.8.

IV. RESULTS

Formally, homology is computed for a topological space
X of N dimensions by systematically assigning a sequence of
Abelian groups Hk�X� �k=0,1 ,2 , . . . ,N−1� to X. For our
purposes, it is sufficient to take Hk to be products of the
integers, i.e., Hk�X�=Z�k�X�, where the integer dimensions of
the groups �k�X��0 are also known as the Betti numbers. In
this work we focus solely on �k�X� as the output of the
homological analysis; each �k�X� describes a topological

FIG. 1. �Color online� Images of spiral defect chaos convection are shown
from laboratory experiments �a, b� and numerical simulations �c, d�. Shad-
owgraph images from the experiments illustrate the convective flows at �a�
�=1.0 and �b� �=2.5. The midplane temperature field is shown at �=1.4 for
simulations carried out under �c� Boussinesq �Q=0� and �d� non-Boussinesq
�Q=4.5� conditions. In all cases, dark regions in the images indicate the hot
upflows and bright regions indicate cold downflows in the convective
patterns.
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Three-Dimensional Cahn-Hilliard Example

Even for relatively small three-dimensional microstructures the
Betti numbers have to be determined computationally:

This isosurface has
Betti numbers
β0 = 1,
β1 = 1701,
β2 = 0.

Computed using the
CHomP software.
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1. Homological Analysis of Evolving Microstructures

2. Response Fields in Polycrystals

3. Spiral Defect Chaos in Fluids
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Models for Phase Separation

Quenching of homogeneous binary or multi-component alloys may
lead to phase separation generating complicated microstructures.
The resulting patterns are generally a transient phenomenon and
evolve with time.

A variety of phenomenological models for such processes have been
proposed over the years, including:

• Cahn & Hilliard (1958), Cook (1970), Langer (1971): The
classical Cahn-Hilliard model and its stochastic extension

ut = −∆(ε2∆u + f (u)) + σ · ξ
• Novick-Cohen (1988): Inclusion of frictional inter-phase forces

leads to the viscous Cahn-Hilliard model

β · ut − (1− β) · ε2∆ut = −∆(ε2∆u + f (u))
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Quantitative Model Assessment

• How realistic are these phenomenological models?

• Do they reproduce the microstructures accurately?

• Is a meaningful quantitative assessment possible?

Due to the irregularity and high complexity of the involved
microstructures, computational homology is an obvious choice.

(Courtesy of P. Voorhees, Northwestern University.)



Evolving Microstructures Polycrystal Response Fields Spiral Defect Chaos in Fluids

Homological Analysis of Microstructures

Gameiro, Mischaikow, W. (Acta Materialia, 2005):

For total mass µ, consider the Betti numbers β0 and β1 of the sets

X±(t) = {x ∈ Ω | ±(u(t, x)− µ) ≥ 0}

Sample set X+(t) for (CHC) with µ = 0, σ = 0, and t = 0.0036.
The set has β0 = 26 components and β1 = 4 loops.
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The Effects of Thermal Fluctuations

Cahn-Hilliard Model with ε = 0.005 and total mass 0:

Cahn-Hilliard-Cook Model with ε = 0.005, σ = 0.01 and mass 0:

The snapshots are taken at t = 0.0004, t = 0.0012, t = 0.0036.

The dark regions are X+(t), their complements are X−(t).
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Sample Betti Number Evolution

Betti number evolution for the Cahn-Hilliard model (solid red) and
the Cahn-Hilliard-Cook model (dashed blue).
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Averaged Betti Number Evolution

From 100 simulations for total mass µ = 0 and a variety of
different noise levels σ.
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Quantification of Boundary Effects

Combining the Betti number information for X±(t) leads to the
quantification of boundary effects.

Only white components
with black boundary are
internal components,
all of the remaining white
components touch the
boundary.

βint,0(X+(t)) = β1(X−(t))
βbdy,0(X+(t)) = β0(X+(t))− β1(X−(t))
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Visualization of Internal Components

The internal components can be visualized using homcubes.

In the figure, β0 = 526 and β1 = 431, for ε = 0.0015 and µ = 0.
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Internal vs. Boundary Components

Averaged evolution curves for the number βint,0 of internal
components and the number βbdy,0 of components touching the
boundary.
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The figures are for X+(t), with ε = 0.005, µ = 0, and 100 samples.
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The Averaged Euler Characteristic

• In the two-dimensional setting, the Euler characteristic of the
set X+(t) can be computed as

χ
(
X+(t)

)
= β0

(
X+(t)

)− β1

(
X+(t)

)
• For mass µ = 0, an inherent symmetry in the Cahn-Hilliard

model implies that the averaged Betti numbers satisfy〈
βk

(
X+(t)

)〉
=

〈
βk

(
X−(t)

)〉
for k = 0, 1

• As a result, the averaged Euler characteristic is given by〈
χ

(
X+(t)

)〉
=

〈
βbdy,0

(
X+(t)

)〉
The Euler characteristic cannot detect the averaged bulk behavior!
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The Effects of Domain Size

• The previous simulations for ε = 0.005 resulted in an average
of about 30 internal and 30 boundary components on a unit
square during the initial phase separation.

• Rescaling ε can be interpreted as rescaling the size of the base
domain for the simulation.

• Additional simulations show that

• for ε = 0.0015 one obtains an average of about 400 internal
and 100 boundary components during the initial phase
separation, and

• for ε = 0.01 one obtains an average of about 6 internal and 15
boundary components during the initial phase separation.

Can the non-monotone bulk behavior still be detected?
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The Effects of Domain Size

Variation of ε corresponds to rescaling the underlying domain Ω.
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Stress Networks in Polycrystals

In other situations, the atomic-level microstructure is not the
primary object of interest, but certain derived property fields.

Example: Thermal degradation of marble [Weiss et al. (2003)]

Internal stresses in polycrystalline materials can lead to
micro-cracking, and ultimately to destruction of components.
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Internal Stresses in β-Eucryptite Composites

Fuller, Reimanis, et al. (2007):

Internal stresses in polycrystals can lead to spontaneous material
ejection as a consequence of an indentation.
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Stress Networks in Polycrystals

Fuller, Saylor, W. (Acta Materialia, 2009):

Even identical grain microstructures
can lead to considerably different
elastic energy density / stress
networks, and therefore to different
cracking behavior. These differences
can be quantified by homology.
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Maximal Principal Stress
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Grain Boundary Misorientations
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Rayleigh-Bénard Convection Patterns

Krishan, et al. (Physics of Fluids, 2007):

Homology and Symmetry-Breaking in Rayleigh-Bénard convection

property of X. Thus, the net result of this analysis is the
characterization of X by a set of N non-negative integers.
�See Ref. 4 for more details.�

From each 1-bit image in time series from either experi-
ments or simulations, two distinct, topological spaces are
obtained: Xh, where the hot upflow pixels have a nonzero
value, and Xc, where the cold downflow pixels have a non-
zero value. Xc and Xh, which are two-dimensional, are input,
in turn, into the homology codes, which subsequently output
two Betti numbers for each space: �0h, �1h for the hot up-
flows, and �0c, �1c for the cold downflows. �0h ��0c� counts
the number of distinct components; i.e., the number of re-
gions of hot upflow �cold downflow� that are separated from
similar regions in a given pattern Xh �Xc� �Figs. 2�a� and
2�b��. �1h ��1c� counts the number of holes in the hot up-
flows �cold downflows� in a given pattern Xh �Xc� �Fig. 2�c�
and 2�d��. With the package CHOMP, computing the homol-
ogy of Xc and Xh corresponding to each image takes about
1 s on a 2.2 Ghz CPU.

Figure 2 shows a striking result: in the experiments, hot
upflows are topologically quite distinct from cold down-
flows. Specifically, there are more cold downflow compo-
nents than hot upflow components ��0c��0h�. Moreover, the
hot upflow regions contain more holes than the cold down-
flow regions ��1h��1c�. This distinction is not revealed us-
ing standard statistical measures of the pattern. For example,
the mean area occupied by upflow is equal to that occupied
by downflow by construction �when the threshold is set to
the median pixel intensity in the original image.� Wave num-
ber distributions obtained from Fourier analysis of Xh and Xc

show no discernible differences.
These measurements of topology are robust to variations

in the choice of threshold. The choice of the median pixel
intensity as the threshold to separate upflows from down-
flows is physically well-motivated but somewhat arbitrary. In
practice, any reasonable choice yields similar results. For
example, for Xh and Xc in Fig. 2, choosing the mean pixel
intensity �which is larger than the median intensity by ap-
proximately 5% of full scale� as the threshold yields nearly
identical Betti numbers: �0h=22, �0c=53, �1h=23, and �1c

=3.
Time series of the Betti numbers exhibit fluctuations

about well-defined time-average values �Fig. 3�. The fluctua-
tions are primarily a global signature of the complex spa-
tiotemporal behavior of spiral defect chaos. Mean flow in-
duced by curvature in the roll pattern leads to regions of
local compression or dilatation throughout the pattern. Com-
pression often leads to merging of neighboring rolls, while
the dilatation results in the formation of a new rolls in the
pattern; these processes are closely related to secondary in-
stability mechanisms for ideal straight rolls.1,8 These local
events drive further changes in pattern curvature, thereby
leading to a continually evolving pattern with fluctuating to-
pology. The Betti numbers are a global measure of the topo-
logical changes, and therefore, are dependent on the local
processes, for which theories of defect dynamics have been
proposed.14 How Betti numbers are related to defect dynam-
ics remains an open question; for our purposes, we focus on
the time-average values of the Betti numbers

��̄0h , �̄1h , �̄0c , �̄1c�, which we find to be stationary for
fixed �.

The measurements of �̄ are robust with respect to flow
visualization conditions. It is well known that shadowgraphy
can introduce significant nonlinearities and image artifacts
�e.g., caustics�; the strength of these effects depend on the
effective optical distance z1 of the shadowgraph system.10

FIG. 2. �Color� Computation of the homology for the experimental data in
Fig. 1�b� yields a sequence of Betti numbers �, which can be readily inter-
preted visually. The number of distinct components is indicated by the ze-
roth Betti number for cold downflows �a� �0c=49 and for hot upflows �b�
�0h=24. �Different colors are used in �a� and �b� to distinguish a given
component from its nearest neighbors.� The number of holes is given by the
first Betti number for cold downflows �c� �1c=2 and for hot upflows �d�
�1h=20. �Each hole is colored red in �c� and �d�.�

FIG. 3. Time series of �a� the zeroth
Betti numbers �0h �open circles� and
�0c �filled circles�, and �b� the first
Betti numbers �1h �open diamonds�
and �1c �filled diamonds� are obtained
from laboratory experiments at �=2.5.
Time is scaled by tv; the time interval
between samples is tv /2.
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Experimental data:

Visualization of the
components and loops for
the cold downflow (left
column) and the hot upflow
(right column).
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Experimental Upflow-Downflow Asymmetry

Experimental data:

Time series plots of the Betti numbers for the cold downflow and
the hot upflow exhibit a surprising asymmetry.

property of X. Thus, the net result of this analysis is the
characterization of X by a set of N non-negative integers.
�See Ref. 4 for more details.�

From each 1-bit image in time series from either experi-
ments or simulations, two distinct, topological spaces are
obtained: Xh, where the hot upflow pixels have a nonzero
value, and Xc, where the cold downflow pixels have a non-
zero value. Xc and Xh, which are two-dimensional, are input,
in turn, into the homology codes, which subsequently output
two Betti numbers for each space: �0h, �1h for the hot up-
flows, and �0c, �1c for the cold downflows. �0h ��0c� counts
the number of distinct components; i.e., the number of re-
gions of hot upflow �cold downflow� that are separated from
similar regions in a given pattern Xh �Xc� �Figs. 2�a� and
2�b��. �1h ��1c� counts the number of holes in the hot up-
flows �cold downflows� in a given pattern Xh �Xc� �Fig. 2�c�
and 2�d��. With the package CHOMP, computing the homol-
ogy of Xc and Xh corresponding to each image takes about
1 s on a 2.2 Ghz CPU.

Figure 2 shows a striking result: in the experiments, hot
upflows are topologically quite distinct from cold down-
flows. Specifically, there are more cold downflow compo-
nents than hot upflow components ��0c��0h�. Moreover, the
hot upflow regions contain more holes than the cold down-
flow regions ��1h��1c�. This distinction is not revealed us-
ing standard statistical measures of the pattern. For example,
the mean area occupied by upflow is equal to that occupied
by downflow by construction �when the threshold is set to
the median pixel intensity in the original image.� Wave num-
ber distributions obtained from Fourier analysis of Xh and Xc

show no discernible differences.
These measurements of topology are robust to variations

in the choice of threshold. The choice of the median pixel
intensity as the threshold to separate upflows from down-
flows is physically well-motivated but somewhat arbitrary. In
practice, any reasonable choice yields similar results. For
example, for Xh and Xc in Fig. 2, choosing the mean pixel
intensity �which is larger than the median intensity by ap-
proximately 5% of full scale� as the threshold yields nearly
identical Betti numbers: �0h=22, �0c=53, �1h=23, and �1c

=3.
Time series of the Betti numbers exhibit fluctuations

about well-defined time-average values �Fig. 3�. The fluctua-
tions are primarily a global signature of the complex spa-
tiotemporal behavior of spiral defect chaos. Mean flow in-
duced by curvature in the roll pattern leads to regions of
local compression or dilatation throughout the pattern. Com-
pression often leads to merging of neighboring rolls, while
the dilatation results in the formation of a new rolls in the
pattern; these processes are closely related to secondary in-
stability mechanisms for ideal straight rolls.1,8 These local
events drive further changes in pattern curvature, thereby
leading to a continually evolving pattern with fluctuating to-
pology. The Betti numbers are a global measure of the topo-
logical changes, and therefore, are dependent on the local
processes, for which theories of defect dynamics have been
proposed.14 How Betti numbers are related to defect dynam-
ics remains an open question; for our purposes, we focus on
the time-average values of the Betti numbers

��̄0h , �̄1h , �̄0c , �̄1c�, which we find to be stationary for
fixed �.

The measurements of �̄ are robust with respect to flow
visualization conditions. It is well known that shadowgraphy
can introduce significant nonlinearities and image artifacts
�e.g., caustics�; the strength of these effects depend on the
effective optical distance z1 of the shadowgraph system.10

FIG. 2. �Color� Computation of the homology for the experimental data in
Fig. 1�b� yields a sequence of Betti numbers �, which can be readily inter-
preted visually. The number of distinct components is indicated by the ze-
roth Betti number for cold downflows �a� �0c=49 and for hot upflows �b�
�0h=24. �Different colors are used in �a� and �b� to distinguish a given
component from its nearest neighbors.� The number of holes is given by the
first Betti number for cold downflows �c� �1c=2 and for hot upflows �d�
�1h=20. �Each hole is colored red in �c� and �d�.�

FIG. 3. Time series of �a� the zeroth
Betti numbers �0h �open circles� and
�0c �filled circles�, and �b� the first
Betti numbers �1h �open diamonds�
and �1c �filled diamonds� are obtained
from laboratory experiments at �=2.5.
Time is scaled by tv; the time interval
between samples is tv /2.
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Can this asymmetry be seen in numerical simulations?
Typical simulations employ the Boussinesq approximation...
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Breakdown of the Boussinesq Approximation

Betti number time series from both Boussinesq simulations (a, b)
and non-Boussinesq simulations (c, d) indicate the breakdown of
the Boussinesq approximation.

We have checked for possible sensitivity to shadowgraphy
visualization by conducting a series of experiments where
the conditions of the convective flow were fixed and image
time series were captured for different values of z1. Figure 4
shows that the mean Betti number changes only slightly as z1

is varied over nearly an order of magnitude. Additional ex-
perimental data �not shown� demonstrate that a change of
sign in z1 �which changes hot upflows �cold downflows�
from bright �dark� to dark �bright�� does not affect the deter-

mination of �̄.
The differences between the mean Betti numbers for hot

upflows �̄0h, �̄1h and for cold downflows �̄0c, �̄1c become
more substantial as � increased above convective onset �Fig.
5�. For �	2.0, the mean numbers of components and holes

are roughly equal for both upflows and downflows. More-
over, the number of holes in downflows/upflows is effec-
tively zero for �	0.7, where the patterns consist essentially
of straight rolls. Near the onset of spiral defect chaos �at
approximately �=0.7 in our experiment, the number of holes
for upflows/downflows becomes nonzero. For ��2.0, the
difference in the average component number grows signifi-
cantly as both the number of cold components grows and the
number of hot components shrinks. The behavior in the num-
ber of holes is somewhat different; for �	2.0, the number of
holes increases significantly in the hot upflows but decreases
only weakly for the cold downflows.

FIG. 4. The mean Betti numbers are plotted as a function of the effective
optical distance z1 of the shadowgraph system in laboratory experiments
performed at ��2. For each data point, the median pixel intensity of the raw
shadowgraph images was used as the threshold for the homology analysis.

FIG. 5. The mean zeroth Betti numbers �̄0h �open circles� and �̄0c �filled

circles�, and first Betti numbers �̄1h �open diamonds� and �̄1c �filled dia-
monds� are shown as a function of � for data from laboratory experiments.
Each data point is obtained by averaging the Betti numbers from analysis of
18 000 images corresponding to an observation time of approximately
1800 tv.

FIG. 6. Time series of the zeroth Betti
numbers �0h �open circles� and �0c

�filled circles�, and the first Betti num-
bers �1h �open diamonds� and �1c

�filled diamonds� are obtained from
numerical simulations at �=1.4. The
midplane temperature field from
Boussinesq simulations is used to ob-
tain time series of �a� �0h, �0c and �b�
�1h, �1c. The midplane temperature
field from non-Boussinesq simulations
is used to obtain time series of �c� �0h,
�0c and �d� �1h, �1c. The vertical ve-
locity component at z=−0.25 from
non-Boussinesq simulations is used to
obtain time series of �e� �0h, �0c and
�f� �1h, �1c. �The midplane is located
at z=0 and the bottom boundary is lo-
cated at z=−0.5.� Time is scaled by tv.
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